
Intro to Graph Theory
2014 IOI Camp 1

Robert Spencer

December 11, 2013

Robert Spencer Intro to Graph Theory 1/20



Introduction

This is a graph:

6
5

4

3

2

1

Robert Spencer Intro to Graph Theory 2/20



Introduction

This is not a graph:

-6

-4

-2

0

2

4

6

8

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x(x + 1)(x − 1)

Robert Spencer Intro to Graph Theory 3/20



Introduction

Definition

A graph is a collection of nodes connected by edges which may or
may not be directed and/or weighted

Examples of graphs:

A computer network (non-directed, non-weighted)

A road map (non-directed, weighted)

Winners in a chess tournament (directed, non-weighted)

Payments in an economy (weighted, directed)

Robert Spencer Intro to Graph Theory 4/20



Introduction

Definition

A graph is a collection of nodes connected by edges which may or
may not be directed and/or weighted

Examples of graphs:

A computer network (non-directed, non-weighted)

A road map (non-directed, weighted)

Winners in a chess tournament (directed, non-weighted)

Payments in an economy (weighted, directed)

Robert Spencer Intro to Graph Theory 4/20



Paths and Cycles

Definition

A path is a sequence of nodes such that each element is
connected by an edge to the one before it.

A cycle is a path with its last element equal to its first.

A connected graph is one which has a path joining every pair
of vertices.

Can you find a path and a cycle?

6
5

4

3

2

1

Example Answer:
Path: 1-3-4-2
Cycle: 4-2-5-6-4

Robert Spencer Intro to Graph Theory 5/20



Paths and Cycles

Definition

A path is a sequence of nodes such that each element is
connected by an edge to the one before it.

A cycle is a path with its last element equal to its first.

A connected graph is one which has a path joining every pair
of vertices.

Can you find a path and a cycle?

6
5

4

3

2

1

Example Answer:
Path: 1-3-4-2
Cycle: 4-2-5-6-4

Robert Spencer Intro to Graph Theory 5/20



Paths and Cycles

Definition

A path is a sequence of nodes such that each element is
connected by an edge to the one before it.

A cycle is a path with its last element equal to its first.

A connected graph is one which has a path joining every pair
of vertices.

Can you find a path and a cycle?

6
5

4

3

2

1

Example Answer:
Path: 1-3-4-2
Cycle: 4-2-5-6-4

Robert Spencer Intro to Graph Theory 5/20



Paths and Cycles

Definition

A path is a sequence of nodes such that each element is
connected by an edge to the one before it.

A cycle is a path with its last element equal to its first.

A connected graph is one which has a path joining every pair
of vertices.

Can you find a path and a cycle?

6
5

4

3

2

1

Example Answer:
Path: 1-3-4-2
Cycle: 4-2-5-6-4

Robert Spencer Intro to Graph Theory 5/20



Paths and Cycles

Definition

A path is a sequence of nodes such that each element is
connected by an edge to the one before it.

A cycle is a path with its last element equal to its first.

A connected graph is one which has a path joining every pair
of vertices.

Can you find a path and a cycle?

6
5

4

3

2

1

Example Answer:
Path: 1-3-4-2
Cycle: 4-2-5-6-4

Robert Spencer Intro to Graph Theory 5/20



Trees

Definition

A tree is an un-directed complete graph with no cycles.

Example

1
2

3

4

5

6

Theorem

A tree of n vertices has n − 1 edges.

Proof.

Induction. Start with one vertex, and
add subsequent ones.

Robert Spencer Intro to Graph Theory 6/20



Trees

Definition

A tree is an un-directed complete graph with no cycles.

Example

1
2

3

4

5

6

Theorem

A tree of n vertices has n − 1 edges.

Proof.

Induction. Start with one vertex, and
add subsequent ones.

Robert Spencer Intro to Graph Theory 6/20



Trees

Definition

A tree is an un-directed complete graph with no cycles.

Example

1
2

3

4

5

6

Theorem

A tree of n vertices has n − 1 edges.

Proof.

Induction. Start with one vertex, and
add subsequent ones.

Robert Spencer Intro to Graph Theory 6/20



Trees

Definition

A tree is an un-directed complete graph with no cycles.

Example

1
2

3

4

5

6

Theorem

A tree of n vertices has n − 1 edges.

Proof.

Induction. Start with one vertex, and
add subsequent ones.

Robert Spencer Intro to Graph Theory 6/20



Trees

Weights are placed on edges, and can represent anything (lengths,
costs, etc.)

6
5

4

3

2

1

5

1

3
1

8

4

2

Robert Spencer Intro to Graph Theory 7/20



Graph Representations

How do we represent a graph?

Lists of Neighbours

[(3,1),(6,2)]

[(4,8),(5,4)]

[(1,1),(4,3)]

[(2,8),(3,3),(6,1)]

[(2,4),(6,5)]

[(5,5)]

Memory O(E )

Adjacency Matrix

0 0 1 0 0 2
0 0 0 8 4 0
1 0 0 3 0 0
0 8 3 0 0 1
0 4 0 0 0 5
0 0 0 1 5 0


Memory O(N2)

Robert Spencer Intro to Graph Theory 8/20



Graph Representations

How do we represent a graph?

Lists of Neighbours

[(3,1),(6,2)]

[(4,8),(5,4)]

[(1,1),(4,3)]

[(2,8),(3,3),(6,1)]

[(2,4),(6,5)]

[(5,5)]

Memory O(E )

Adjacency Matrix

0 0 1 0 0 2
0 0 0 8 4 0
1 0 0 3 0 0
0 8 3 0 0 1
0 4 0 0 0 5
0 0 0 1 5 0


Memory O(N2)

Robert Spencer Intro to Graph Theory 8/20



Graph Representations

How do we represent a graph?

Lists of Neighbours

[(3,1),(6,2)]

[(4,8),(5,4)]

[(1,1),(4,3)]

[(2,8),(3,3),(6,1)]

[(2,4),(6,5)]

[(5,5)]

Memory O(E )

Adjacency Matrix

0 0 1 0 0 2
0 0 0 8 4 0
1 0 0 3 0 0
0 8 3 0 0 1
0 4 0 0 0 5
0 0 0 1 5 0


Memory O(N2)

Robert Spencer Intro to Graph Theory 8/20



Traversal

Sometimes we want to visit all the nodes in a graph in a particular
order. For example to search for a path/destination

6
5

4

3

2

1

5

1

31

8
4

2

We may visit nodes more than once, as there may be more than
one path. E.g. to get from 1 to 2, we may visit 4 twice: 1-6-4-2 or
1-3-4-2.
Often this is used to find the shortest route between two or more
nodes.

Robert Spencer Intro to Graph Theory 9/20



Traversal

Sometimes we want to visit all the nodes in a graph in a particular
order. For example to search for a path/destination

6
5

4

3

2

1

5

1

31

8
4

2

We may visit nodes more than once, as there may be more than
one path. E.g. to get from 1 to 2, we may visit 4 twice: 1-6-4-2 or
1-3-4-2.

Often this is used to find the shortest route between two or more
nodes.

Robert Spencer Intro to Graph Theory 9/20



Traversal

Sometimes we want to visit all the nodes in a graph in a particular
order. For example to search for a path/destination

6
5

4

3

2

1

5

1

31

8
4

2

We may visit nodes more than once, as there may be more than
one path. E.g. to get from 1 to 2, we may visit 4 twice: 1-6-4-2 or
1-3-4-2.
Often this is used to find the shortest route between two or more
nodes.

Robert Spencer Intro to Graph Theory 9/20



Depth First Search

Depth First Search (DFS) visits the nodes as far as it can before
backtracking (without visiting nodes more than once).

Sample Graph:

f
e

d

c

b

a

5

1

31

8
4

2

Psudocode:

def DFS(currNode, finalNode)

if currNode==finalNode then

return success

set currNode visited

foreach neighbour of currNode do

if neighbour not visited then

DFS(neighbour,finalNode)

unset currNode visited

Nodes (starting from a) will be visited in this order:
a-c-d-b-e-f-f-e-b-f-d-c-b-e

Robert Spencer Intro to Graph Theory 10/20



Depth First Search

Depth First Search (DFS) visits the nodes as far as it can before
backtracking (without visiting nodes more than once).

Sample Graph:

f
e

d

c

b

a

5

1

31

8
4

2

Psudocode:

def DFS(currNode, finalNode)

if currNode==finalNode then

return success

set currNode visited

foreach neighbour of currNode do

if neighbour not visited then

DFS(neighbour,finalNode)

unset currNode visited

Nodes (starting from a) will be visited in this order:
a-c-d-b-e-f-f-e-b-f-d-c-b-e

Robert Spencer Intro to Graph Theory 10/20



Depth First Search

Depth First Search (DFS) visits the nodes as far as it can before
backtracking (without visiting nodes more than once).

Sample Graph:

f
e

d

c

b

a

5

1

31

8
4

2

Psudocode:

def DFS(currNode, finalNode)

if currNode==finalNode then

return success

set currNode visited

foreach neighbour of currNode do

if neighbour not visited then

DFS(neighbour,finalNode)

unset currNode visited

Nodes (starting from a) will be visited in this order:

a-c-d-b-e-f-f-e-b-f-d-c-b-e

Robert Spencer Intro to Graph Theory 10/20



Depth First Search

Depth First Search (DFS) visits the nodes as far as it can before
backtracking (without visiting nodes more than once).

Sample Graph:

f
e

d

c

b

a

5

1

31

8
4

2

Psudocode:

def DFS(currNode, finalNode)

if currNode==finalNode then

return success

set currNode visited

foreach neighbour of currNode do

if neighbour not visited then

DFS(neighbour,finalNode)

unset currNode visited

Nodes (starting from a) will be visited in this order:
a-c-d-b-e-f-f-e-b-f-d-c-b-e

Robert Spencer Intro to Graph Theory 10/20



Depth First Search Example

f

e

d

c

b

a

5

1

3
1

8

4

2

Robert Spencer Intro to Graph Theory 11/20



Depth First Search Example

f

e

d

c

b

a

5

1

3
1

8

4

2

a

Robert Spencer Intro to Graph Theory 11/20



Depth First Search Example

f

e

d

c

b

a

5

1

3
1

8

4

2

c

a

Robert Spencer Intro to Graph Theory 11/20



Depth First Search Example

f

e

d

c

b

a

5

1

3
1

8

4

2

d

a

c

Robert Spencer Intro to Graph Theory 11/20



Depth First Search Example

f

e

d

c

b

a

5

1

3
1

8

4

2

b

a

c

d

Robert Spencer Intro to Graph Theory 11/20



Depth First Search Example

f

e

d

c

b

a

5

1

3
1

8

4

2

e

a

c

d

b

Robert Spencer Intro to Graph Theory 11/20



Depth First Search Example

f

e

d

c

b

a

5

1

3
1

8

4

2

f

a

c

d

b

e

Robert Spencer Intro to Graph Theory 11/20



Depth First Search Example

f

e

d

c

b

a

5

1

3
1

8

4

2

f

a

c

d

Robert Spencer Intro to Graph Theory 11/20



Depth First Search Example

f

e

d

c

b

a

5

1

3
1

8

4

2

e

a

c

d

f

Robert Spencer Intro to Graph Theory 11/20



Depth First Search Example

f

e

d

c

b

a

5

1

3
1

8

4

2

b

a

c

d

f

e

Robert Spencer Intro to Graph Theory 11/20



Depth First Search Example

f

e

d

c

b

a

5

1

3
1

8

4

2

f

a

Robert Spencer Intro to Graph Theory 11/20



Depth First Search Example

f

e

d

c

b

a

5

1

3
1

8

4

2

d

a

f

Robert Spencer Intro to Graph Theory 11/20



Depth First Search Example

f

e

d

c

b

a

5

1

3
1

8

4

2

c

a

f

d

Robert Spencer Intro to Graph Theory 11/20



Depth First Search Example

f

e

d

c

b

a

5

1

3
1

8

4

2

b

a

f

d

Robert Spencer Intro to Graph Theory 11/20



Depth First Search Example

f

e

d

c

b

a

5

1

3
1

8

4

2

e

a

f

d

b

Robert Spencer Intro to Graph Theory 11/20



Breadth First Search

Breadth First Search (DFS) visits the nodes “in parallel” without
backtracking.

Sample Graph:

6
5

4

3

2

1

5

1

31

8
4

2

Psudocode:

def BFS(currNode, finalNode)

add currNode to queue

while queue not empty do

pop first element as currNode

set currNode visited

foreach neighbour of currNode do

if neighbour not visited

add neighbour to queue

Nodes (starting from 1) will be visited in this order: 1-3-6-4-5-2

Robert Spencer Intro to Graph Theory 12/20



Breadth First Search

Breadth First Search (DFS) visits the nodes “in parallel” without
backtracking.

Sample Graph:

6
5

4

3

2

1

5

1

31

8
4

2

Psudocode:

def BFS(currNode, finalNode)

add currNode to queue

while queue not empty do

pop first element as currNode

set currNode visited

foreach neighbour of currNode do

if neighbour not visited

add neighbour to queue

Nodes (starting from 1) will be visited in this order: 1-3-6-4-5-2

Robert Spencer Intro to Graph Theory 12/20



Breadth First Search

Breadth First Search (DFS) visits the nodes “in parallel” without
backtracking.

Sample Graph:

6
5

4

3

2

1

5

1

31

8
4

2

Psudocode:

def BFS(currNode, finalNode)

add currNode to queue

while queue not empty do

pop first element as currNode

set currNode visited

foreach neighbour of currNode do

if neighbour not visited

add neighbour to queue

Nodes (starting from 1) will be visited in this order:

1-3-6-4-5-2

Robert Spencer Intro to Graph Theory 12/20



Breadth First Search

Breadth First Search (DFS) visits the nodes “in parallel” without
backtracking.

Sample Graph:

6
5

4

3

2

1

5

1

31

8
4

2

Psudocode:

def BFS(currNode, finalNode)

add currNode to queue

while queue not empty do

pop first element as currNode

set currNode visited

foreach neighbour of currNode do

if neighbour not visited

add neighbour to queue

Nodes (starting from 1) will be visited in this order: 1-3-6-4-5-2

Robert Spencer Intro to Graph Theory 12/20



Breadth First Search Example

f

e

d

c

b

a

5

1

3
1 8

4

2

Robert Spencer Intro to Graph Theory 13/20



Breadth First Search Example

f

e

d

c

b

a

5

1

3
1 8

4

2

c

f

aa

Robert Spencer Intro to Graph Theory 13/20



Breadth First Search Example

f

e

d

c

b

a

5

1

3
1 8

4

2

c

f

d

a

cc

Robert Spencer Intro to Graph Theory 13/20



Breadth First Search Example

f

e

d

c

b

a

5

1

3
1 8

4

2

c

f

d

e

a

c

ff

Robert Spencer Intro to Graph Theory 13/20



Breadth First Search Example

f

e

d

c

b

a

5

1

3
1 8

4

2

c

f

d

e

b

a

c

f

dd

Robert Spencer Intro to Graph Theory 13/20



Breadth First Search Example

f

e

d

c

b

a

5

1

3
1 8

4

2

c

f

d

e

b

a

c

f

d

ee

Robert Spencer Intro to Graph Theory 13/20



Breadth First Search Example

f

e

d

c

b

a

5

1

3
1 8

4

2

c

f

d

e

b

a

c

f

d

e

bb

Robert Spencer Intro to Graph Theory 13/20



Dijkstra’s Algorithm

Dijkstra’s Algorithm finds the shortest distance from one node to
all others. It is basically a BFS with a priority queue.

Psudocode:

set all distances INF

add (0, startNode) to queue

while queue not empty do

currDists,currNode = queue.pop

distances[currNode] = currDist

for neighbour,distance in adjacent[currNode] do

possNewDist = distances[currNode] + distance

if distances[neighbour] > possNewDist then

update neighbour to weight possNewDist in queue

Robert Spencer Intro to Graph Theory 14/20



Dijkstra’s Algorithm

Dijkstra’s Algorithm finds the shortest distance from one node to
all others. It is basically a BFS with a priority queue.

Psudocode:

set all distances INF

add (0, startNode) to queue

while queue not empty do

currDists,currNode = queue.pop

distances[currNode] = currDist

for neighbour,distance in adjacent[currNode] do

possNewDist = distances[currNode] + distance

if distances[neighbour] > possNewDist then

update neighbour to weight possNewDist in queue

Robert Spencer Intro to Graph Theory 14/20



Dijkstra Example

Queue: {(a, 0)}

Queue: {(d , 5), (b, 7)}Queue: {(b, 7), (f , 11), (e, 20)}Queue: {(f , 11), (e, 14), (c , 15)}Queue: {(e, 14), (c , 15), (g , 22)}Queue: {(c , 15), (g , 16)}Queue: {(g , 16)}Queue: {}

a

b c

d e

f g

7

8
5

9

7

5
15

6

8

2

11

a0

Robert Spencer Intro to Graph Theory 15/20



Dijkstra Example

Queue: {(a, 0)}

Queue: {(d , 5), (b, 7)}

Queue: {(b, 7), (f , 11), (e, 20)}Queue: {(f , 11), (e, 14), (c , 15)}Queue: {(e, 14), (c , 15), (g , 22)}Queue: {(c , 15), (g , 16)}Queue: {(g , 16)}Queue: {}

a

b c

d e

f g

7

8
5

9

7

5
15

6

8

2

11

a0

d5

b7

Robert Spencer Intro to Graph Theory 15/20



Dijkstra Example

Queue: {(a, 0)}Queue: {(d , 5), (b, 7)}

Queue: {(b, 7), (f , 11), (e, 20)}

Queue: {(f , 11), (e, 14), (c , 15)}Queue: {(e, 14), (c , 15), (g , 22)}Queue: {(c , 15), (g , 16)}Queue: {(g , 16)}Queue: {}

a

b c

d e

f g

7

8
5

9

7

5
15

6

8

2

11

a0

d5

b7

f 11

e20

Robert Spencer Intro to Graph Theory 15/20



Dijkstra Example

Queue: {(a, 0)}Queue: {(d , 5), (b, 7)}Queue: {(b, 7), (f , 11), (e, 20)}

Queue: {(f , 11), (e, 14), (c, 15)}

Queue: {(e, 14), (c, 15), (g , 22)}Queue: {(c , 15), (g , 16)}Queue: {(g , 16)}Queue: {}

a

b c

d e

f g

7

8
5

9

7

5
15

6

8

2

11

a0

d5

b7 c15

f 11

e14

Robert Spencer Intro to Graph Theory 15/20



Dijkstra Example

Queue: {(a, 0)}Queue: {(d , 5), (b, 7)}Queue: {(b, 7), (f , 11), (e, 20)}Queue: {(f , 11), (e, 14), (c, 15)}

Queue: {(e, 14), (c, 15), (g , 22)}

Queue: {(c , 15), (g , 16)}Queue: {(g , 16)}Queue: {}

a

b c

d e

f g

7

8
5

9

7

5
15

6

8

2

11

a0

d5

b7

f 11

c15

e14

g22

Robert Spencer Intro to Graph Theory 15/20



Dijkstra Example

Queue: {(a, 0)}Queue: {(d , 5), (b, 7)}Queue: {(b, 7), (f , 11), (e, 20)}Queue: {(f , 11), (e, 14), (c, 15)}Queue: {(e, 14), (c, 15), (g , 22)}

Queue: {(c , 15), (g , 16)}

Queue: {(g , 16)}Queue: {}

a

b c

d e

f g

7

8
5

9

7

5
15

6

8

2

11

a0

d5

b7

f 11

e14

c15

g16

Robert Spencer Intro to Graph Theory 15/20



Dijkstra Example

Queue: {(a, 0)}Queue: {(d , 5), (b, 7)}Queue: {(b, 7), (f , 11), (e, 20)}Queue: {(f , 11), (e, 14), (c, 15)}Queue: {(e, 14), (c, 15), (g , 22)}Queue: {(c , 15), (g , 16)}

Queue: {(g , 16)}

Queue: {}

a

b c

d e

f g

7

8
5

9

7

5
15

6

8

2

11

a0

d5

b7

f 11

e14

c15

g16

Robert Spencer Intro to Graph Theory 15/20



Dijkstra Example

Queue: {(a, 0)}Queue: {(d , 5), (b, 7)}Queue: {(b, 7), (f , 11), (e, 20)}Queue: {(f , 11), (e, 14), (c, 15)}Queue: {(e, 14), (c, 15), (g , 22)}Queue: {(c , 15), (g , 16)}Queue: {(g , 16)}

Queue: {}

a

b c

d e

f g

7

8
5

9

7

5
15

6

8

2

11

a0

d5

b7

f 11

e14

c15

g16

Robert Spencer Intro to Graph Theory 15/20



Minimum Spanning Tree

Definition

A minimum spanning tree is a subset of edges in a weighted
undirected graph such that the edges form a tree containing all the
nodes, and the sum of the weights of the tree is minimal.

a

b c

d e

f g

7

8
5

9

7

5
15

6

8

2

11

Robert Spencer Intro to Graph Theory 16/20



Minimum Spanning Tree

Definition

A minimum spanning tree is a subset of edges in a weighted
undirected graph such that the edges form a tree containing all the
nodes, and the sum of the weights of the tree is minimal.

a

b c

d e

f g

7

8
5

9

7

5
15

6

8

2

11

Robert Spencer Intro to Graph Theory 16/20



Prim’s Algorithm

Prim’s Algorithm finds the minimum spanning tree from a given
graph.

Algorithm

Set all vertices to “not in the tree” except a starting vertex.

While there are vertices not in the tree, add the vertex which
is connected to the tree by the shortest edge to the tree.

Technical notes

Keep a priority queue of edges. Each step pull off an edge,
check if it joins a new vertex. If it does, add all the edges
from that vertex to the queue.

Runs in O(E logV ) with a binary heap as priority queue.

Robert Spencer Intro to Graph Theory 17/20



Prim’s Algorithm

Prim’s Algorithm finds the minimum spanning tree from a given
graph.
Algorithm

Set all vertices to “not in the tree” except a starting vertex.

While there are vertices not in the tree, add the vertex which
is connected to the tree by the shortest edge to the tree.

Technical notes

Keep a priority queue of edges. Each step pull off an edge,
check if it joins a new vertex. If it does, add all the edges
from that vertex to the queue.

Runs in O(E logV ) with a binary heap as priority queue.

Robert Spencer Intro to Graph Theory 17/20



Prim’s Algorithm

Prim’s Algorithm finds the minimum spanning tree from a given
graph.
Algorithm

Set all vertices to “not in the tree” except a starting vertex.

While there are vertices not in the tree, add the vertex which
is connected to the tree by the shortest edge to the tree.

Technical notes

Keep a priority queue of edges. Each step pull off an edge,
check if it joins a new vertex. If it does, add all the edges
from that vertex to the queue.

Runs in O(E logV ) with a binary heap as priority queue.

Robert Spencer Intro to Graph Theory 17/20



Prim’s Algorithm Example

a

b c

d e

f g

7

8
5

9

7

5
15

6

8

9

11

Robert Spencer Intro to Graph Theory 18/20



Prim’s Algorithm Example

a

b c

d e

f g

7

8
5

9

7

5
15

6

8

9

11

a

Robert Spencer Intro to Graph Theory 18/20



Prim’s Algorithm Example

a

b c

d e

f g

7

8
5

9

7

5
15

6

8

9

11

a

d

Robert Spencer Intro to Graph Theory 18/20



Prim’s Algorithm Example

a

b c

d e

f g

7

8
5

9

7

5
15

6

8

9

11

a

d

f

Robert Spencer Intro to Graph Theory 18/20



Prim’s Algorithm Example

a

b c

d e

f g

7

8
5

9

7

5
15

6

8

9

11

a

d

f

b

Robert Spencer Intro to Graph Theory 18/20



Prim’s Algorithm Example

a

b c

d e

f g

7

8
5

9

7

5
15

6

8

9

11

a

d

f

b

e

Robert Spencer Intro to Graph Theory 18/20



Prim’s Algorithm Example

a

b c

d e

f g

7

8
5

9

7

5
15

6

8

9

11

a

d

f

b

e

c

Robert Spencer Intro to Graph Theory 18/20



Prim’s Algorithm Example

a

b c

d e

f g

7

8
5

9

7

5
15

6

8

9

11

a

d

f

b

e

c

Robert Spencer Intro to Graph Theory 18/20



Prim’s Algorithm Example

a

b c

d e

f g

7

8
5

9

7

5
15

6

8

9

11

a

d

f

b

e

c

Robert Spencer Intro to Graph Theory 18/20



Prim’s Algorithm Example

a

b c

d e

f g

7

8
5

9

7

5
15

6

8

9

11

a

d

f

b

e

c

Robert Spencer Intro to Graph Theory 18/20



Prim’s Algorithm Example

a

b c

d e

f g

7

8
5

9

7

5
15

6

8

9

11

a

d

f

b

e

c

g

Robert Spencer Intro to Graph Theory 18/20



Prim’s Algorithm Example

a

b c

d e

f g

7

8
5

9

7

5
15

6

8

9

11

a

d

f

b

e

c

g

Robert Spencer Intro to Graph Theory 18/20



Prim’s Algorithm Example

a

b c

d e

f g

7

8
5

9

7

5
15

6

8

9

11

a

d

f

b

e

c

g

Robert Spencer Intro to Graph Theory 18/20



Kruskal’s Algorithm

Kruskal’s Algorithm is the “dual” of Prim’s. It also finds the
minimum spanning tree.

Algorithm:

Consider each vertex as a tree, containing no edges and just
itself.

While we don’t have a MST, consider the smallest edge not
yet considered. If it joins two different trees, include it in the
MST.

Technical Notes:

Use “union-find” to hold the different trees.

Complexity O(E log E )

Robert Spencer Intro to Graph Theory 19/20



Kruskal’s Algorithm

Kruskal’s Algorithm is the “dual” of Prim’s. It also finds the
minimum spanning tree.
Algorithm:

Consider each vertex as a tree, containing no edges and just
itself.

While we don’t have a MST, consider the smallest edge not
yet considered. If it joins two different trees, include it in the
MST.

Technical Notes:

Use “union-find” to hold the different trees.

Complexity O(E log E )

Robert Spencer Intro to Graph Theory 19/20



Kruskal’s Algorithm

Kruskal’s Algorithm is the “dual” of Prim’s. It also finds the
minimum spanning tree.
Algorithm:

Consider each vertex as a tree, containing no edges and just
itself.

While we don’t have a MST, consider the smallest edge not
yet considered. If it joins two different trees, include it in the
MST.

Technical Notes:

Use “union-find” to hold the different trees.

Complexity O(E log E )

Robert Spencer Intro to Graph Theory 19/20



Kruskal’s Algorithm Example

a

b c

d e

f g

7

8
5

9

7

5
15

6

8

9

11

Robert Spencer Intro to Graph Theory 20/20



Kruskal’s Algorithm Example

a

b c

d e

f g

7

8
5

9

7

5
15

6

8

9

11

Robert Spencer Intro to Graph Theory 20/20



Kruskal’s Algorithm Example

a

b c

d e

f g

7

8
5

9

7

5
15

6

8

9

11

a

d

Robert Spencer Intro to Graph Theory 20/20



Kruskal’s Algorithm Example

a

b c

d e

f g

7

8
5

9

7

5
15

6

8

9

11

c

e

a

d

Robert Spencer Intro to Graph Theory 20/20



Kruskal’s Algorithm Example

a

b c

d e

f g

7

8
5

9

7

5
15

6

8

9

11

c

e

a

d

f

Robert Spencer Intro to Graph Theory 20/20



Kruskal’s Algorithm Example

a

b c

d e

f g

7

8
5

9

7

5
15

6

8

9

11

c

e

b

a

d

f

Robert Spencer Intro to Graph Theory 20/20



Kruskal’s Algorithm Example

a

b c

d e

f g

7

8
5

9

7

5
15

6

8

9

11

c

e

b

a

d

f

c

e

b

Robert Spencer Intro to Graph Theory 20/20



Kruskal’s Algorithm Example

a

b c

d e

f g

7

8
5

9

7

5
15

6

8

9

11

c

e

b

a

d

f

c

e

b

Robert Spencer Intro to Graph Theory 20/20



Kruskal’s Algorithm Example

a

b c

d e

f g

7

8
5

9

7

5
15

6

8

9

11

c

e

b

a

d

f

c

e

b

Robert Spencer Intro to Graph Theory 20/20



Kruskal’s Algorithm Example

a

b c

d e

f g

7

8
5

9

7

5
15

6

8

9

11

c

e

b

a

d

f

c

e

b

Robert Spencer Intro to Graph Theory 20/20



Kruskal’s Algorithm Example

a

b c

d e

f g

7

8
5

9

7

5
15

6

8

9

11

c

e

b

a

d

f

c

e

b

g

Robert Spencer Intro to Graph Theory 20/20



Kruskal’s Algorithm Example

a

b c

d e

f g

7

8
5

9

7

5
15

6

8

9

11

c

e

b

a

d

f

c

e

b

g

Robert Spencer Intro to Graph Theory 20/20



Kruskal’s Algorithm Example

a

b c

d e

f g

7

8
5

9

7

5
15

6

8

9

11

c

e

b

a

d

f

c

e

b

g

Robert Spencer Intro to Graph Theory 20/20


